Oxygen-, Nitrogen-, and Sulfur-Substituted Heteroallenes

WERNER REICHEN

Joseph Muller Corporation Zurich, Scheuchzerstrasse 7, 8006 Zurich, Switzerland

Received June 8, 1978

Contents

1. Introduction

Heteroallenes, compounds containing a three-center moiety connected by two orthogonal, nonconjugated double bonds in which at least one carbon atom is replaced by a heteroatom, belong to one of the most important classes of synthons and intermediates in organic chemistry to date. Even though a few of the theoretically possible combinations-if only the elements carbon, nitrogen, oxygen, phosphorus, and sulfur are considered-have escaped synthesis thus far, the chemical behavior of most of them has been, well established.

$$
X = Y = Z \nX = C, N, P, S \nY = C, P, S \nZ = C, N, O, P, S
$$

It is known that the reactivity (and so the electronic character of the three involved atoms) of heteroallenes can be strongly influenced and even inverted if more or less electron-withdrawing or -donating substituents are attached to one (or more) of the functional atoms. Many reviews have appeared on the former subject in which an electron-withdrawing group such as sulfonyl,^{1,2} chlorosulfonyl,³ phosphorus,⁴ and carbonyl^{5,6} is attached to an isocyanate function. The opposite case, in which an electron-donating atom such as oxygen, nitrogen, or sulfur alters the chemical behavior of a heteroallenic system from its usual behavior in a particular compound, has received considerable attention in the past 10 years owing to the variety of important synthetic possibilities that several of these molecules have created. In this article we shall deal with their synthesis and reactions, hoping to stimulate further work in this most promising field. The literature has been covered from the beginning up to the early spring 1978 issues and nearly 200 references are cited.

11. Ketenes

A. N-Substituted Ketenes

Intermediate aminoketenes are always formed when α -diazoamides are photolytically or thermally decomposed; however, the reaction of the carbene, probably formed first, with a substrate in the reaction medium competes effectively. Thus, *N*methyldiazoacetamide **)1),** upon photolysis in water, gives hydroxymethylacetamide **(3)** and Nmethylglycine **(5)** in a ratio *2:* 1 .' The intermediate carbene **2** can be trapped by the solvent but undergoes, in part, a Wolff rearrangement to methylaminoketene **(4)** which is hydrolyzed to the amino acid derivative.

Similarly, small amounts (18%) of methyl N, N-diethylglycinate **(8)** have been isolated when N,N-diethyldiazoacetamide **(6)** was photolytically decomposed in methanol, its formation involving a ketene intermediate 7 also.⁸

Photolysis and thermolysis of ethyl diazomalonanilate **(9)** in various alcohols yield considerable amounts of α -N-phenylaminomalonic esters **13.9 A** possible mechanism could involve migration of the phenylamino group to give a ketene intermediate **11.** Since no ketene species could be trapped (e.g., with styrene), an alternative mechanism could involve formation of an a-lactam intermediate **12** by carbene **10** N-H insertion.

Anhydro-5-hydroxo-3-methyl-2,4-diphenyloxazoline hydroxide inner salt (14) reacts with imines by a $[2 + 2]$ cycloaddition to give four-membered lactam **16** (see Table I). This contrasts with its usual behavior toward other double and triple bonds where

@ 1978 American Chemical Society **569**

TABLE 1. Formation of B-Laclams 1615

C₂H₅OOCCCONHC₆H₅

 $a [3 + 2]$ addition takes place.^{10,11} A ring open-chain tautomerism which leads to an acylaminoketene **15** could explain the difference; carbon-nitrogen double bonds are known to be very

powerful ketene trapping agents and the formation of β -lactams from ketenes and azomethines^{12,13} as well as their cycloaddition to carbodiimides¹⁴ are known. The result obtained by thermolyzing **14** in boiling xylene further supports the hypothesis of the tautomerism: dimerization of the ketene 15 to β -lactone 17 followed by carbon dioxide elimination gives 1,3-diphenyl-1,3-bis(benzoylmethylamino)allene **(18)** in **86%** yield.15 Analogous photoinduced ring openings have been observed with mesoionic thiadiazoles¹⁶⁻¹⁹ (see below).

Attempts to generate aminoketenes by dehydrohalogenation of amino acid chlorides are limited to such cases in which the nitrogen atom carries an electron-withdrawing substituent such as succinoyl, maleyl, or phthaloyl^{13,20-30} or an N_2 ⁺ group.³¹ Thus, addition of a benzene solution of phthaloylglycyl chloride **19** to an equimolar amount of triethylamine and an excess of benzalaniline gives instantaneous formation of β -lactam 21.¹³

The reaction can be visualized by proceeding through an aminoketene intermediate **20** which adds to benzalaniline in a [2 + **21** cycloaddition (yield 50%). The base **22** can be set free by treating the phthalimido derivative with hot alcoholic hydrazine.

Aminoketenes **20** also add to carbon-nitrogen double bonds which make part of a ring system. With this method it was possible to synthesize a 5-phenylpenicillin derivative **24** which had the complete structure of natural penicillin. The key step is the condensation of the aminoketene with methyl 2-phenyl-5,5 dimethyl-2-thiazoline-4-carboxylate **(23).21** The corresponding

TABLE II. 8-Lactams 3130

				yield,	
31	R	R١	R^2	%	mp, °C
a	C_6H_5	CH ₃	н	18	219.5-221
b	C_6H_5	C_2H_5	н	46	203.5-205
c	C_6H_5	CH ₃	CH ₃	29	213-213.5
d	C_6H_5	C_2H_5	CH ₃	32	235-238
е	C_6H_5	CH3	СI	17	225.5-229
f	C_6H_5	C_2H_5	СI	28	223-225
g	$\mathsf{C_6H_5}$	CH ₃	Br	22	$222.5 - 224$
h	C_6H_5	C_2H_5	Br	27	223-224
	C_6H_5	CH ₃	OCH ₃	36	206-207
k	C_6H_5	C_2H_5	OCH ₃	40	241.5-243
	CH ₃	C_2H_5	н	24	174-174.5

derivatives were obtained when 2-phenyl-2-thiazoline was caused to react under various conditions with phthaloylglycyl chloride^{24,29} or succinoylglycyl chloride.²⁵ Analogously, the reaction of these substituted glycyl chlorides with 2-phenyl- Δ^2 -dihydro-1,3-thiazines in presence of triethylamine gave compounds with the cephalosporin skeleton. $26,27$

Application of the 5-phenyloxazoline-2,4-dione instead of the phthalimido precursor leads to the α -(phenylacetylamino) derivative; however, it was only possible to obtain the sulfone **25** since hydrogenolysis of the unoxidized lactam failed.²² This

difficulty was overcome by starting with 2-benzylidene-4,5 diketo-3-oxazolidineacetyl chloride **(26);** treating the 0-lactam **27** with 2 equiv of benzylamine produced the two alternative cleavage products **28** and **29** in 32 and 21 % yield,25 respectively.

TABLE III. β -Lactams 33²⁹

33	R	XR1	yield, %	mp, ۰c
а	C_6H_5	OCH ₃	50	190
b	C_6H_5	OC ₂ H ₅	55	191
c	C_6H_5	OCH(CH ₃) ₂	51	218
d	C_6H_5	SCH ₃	70	203
е	н	OC ₂ H ₅	31	165
	н	SC ₂ H ₅	33	138

Azomethines containing a phosphonoester group, **30,** give the stable phosphorus-containing azetidinones **3130** (Table 11). Imidates 32 behave in the same way²⁹ (Table III); however, when amidines **34** are used as trapping agents for the aminoketene, 0-lactams **35** are formed as intermediates only; a cycloreversion takes place forming an enamine 36 and an isocyanate 37.²⁸

A convenient synthesis of α -amino- β -lactams 22f-t (see Table IV) is based on the facile reduction of corresponding *a*azido- β -lactams 40f-t which in turn are obtained by cycloaddition of a-azidoketene **39.** Thus, when a methylene chloride solution

of azidoacetyl chloride 38^{32} was added dropwise to a solution of benzalaniline and triethylamine in the same solvent at room temperature or below, a mixture of the cis and trans β -lactam 40 (ratio 3: 1) was obtained. When triethylamine was added to a solution of the Schiff base and the acid chloride 38, the relative proportions of cis and trans isomers were reversed and were found to be about 1:3. This indicates that different mechanisms may be involved in the cyclization step, 31 an alternative pathway being the formation of a salt with a structure like 41 which has been proposed **as** intermediate in the lactam-formation using cyanoacetyl chloride.39

41

When the dehydrochlorination is performed on substituted phthalyl amino acid chlorides 19b-e^{34,35} in carbon tetrachloride without added trapping agent, the formation of the ketenes **20b-e** can be evidenced by IR absorptions between 2100 and 2150 cm^{-1} . As in the case of β -phenylalanine (20b), phenylglycine (20c), and valine (20d), these absorptions disappeared rather quickly; phthalimido-tert-butylketene (20e) was isolated.²⁰

When optically active N-phthalyl- α -amino acid chlorides are esterified by base catalysis with an optically active base (e.g., brucine), the reaction products show (at least partial) optical inversion.36 However, from the data given it cannot be conclusively determined to what extent an asymetric synthesis of an alcohol to an aminoketene is involved.

 $N-(\alpha$ -Diazoacyl)phthalimides undergo Wolff rearrangement upon photolysis giving the corresponding aminoketenes which react as shown above, i.e., methanolysis or β -lactam formation with benzalaniline. $37,38$

Evidence for the existence of aminoketene fragments, formed by the decomposition of cyclodepsipeptides,³⁹ methyl and ethyl picolinate40 in the mass spectrometer, has been reported.

6. 0-Substituted Ketenes

Ketenes connected by an oxygen cannot be isolated; however, there **is** a large amount of evidence showing their intermediacy in reactions. Westheimer⁴¹ observed, for the first time, Wolff rearrangement of a diazo ester on photolysis of diazoacetylchymotrypsin (42) . The formation of *O*-carboxymethylserine (45) presumably involves elimination of nitrogen and rearrangement of the carbene 43 followed by hydrolysis of the resulting alkoxyketene 44. Subsequent hydrolysis of the protein yields 45. This reaction had not been previously observed with diazo esters.⁴²⁻⁴⁴ A similar reaction has been observed with azaserine.41

The first step in the photolysis of ethyl diazoacetate (46) in 2-propanol is the formation of the carbenic carbethoxymethylene 47. This inserts into the tertiary carbon-hydrogen bond of the solvent 48, undergoes polar addition with the hydroxy function 49, and rearranges to a certain extent (29%) to ethoxyketene (50) which reacts with the solvent to give the corresponding ethoxyacetate 51.45 Similar results have been obtained with ethyl and phenyl diazoacetate in methanol, the former yielding **20-** 25 % , the latter **45-60** % , of rearrangement product^.^

An interesting alkoxy exchange has been observed in this type of reaction by Strausz and his co-workers.⁴⁶ He interprets it as a light-induced heterolysis in which ion pairs are produced. The resonance-stabilized ketenediazonium ion 52 may live long enough to undergo anion exchange to 53 and eventually form the ketene 54. Stable aliphatic diazonium ions of similar structure have been synthesized, 47 and diazo compounds with a good leaving group may be expected to undergo heterolysis.⁴⁸

Carbomethoxycarbene **(56)** generated by photolysis of the corresponding diazo precursor **55** in benzene gives, besides cycloheptatrienecarboxylic ester **57,** a tetramer of carbomethoxymethylene **(60)** consisting of four stereoisomers of the dioxanes **60** or **61.** Their formation can only be rationalized by

CH₃OCO-CHN₂ **55** $\stackrel{hv}{\longrightarrow}$ CH₃OCO---CH: $\stackrel{C_6H_5}{\longrightarrow}$ CH₃OCO **56** 57 \downarrow CH_3O CH₃C-CH **58** $CH₃OCO²$ \rightarrow CH30 x;cHc;ocH3 **59** $CH₃O$ CHCOOCH₃ CH30COCH OCH3 **60** CH₃OCOCH₂ O_VCHCOOCH₃ or $OCH₃$ $CH₃O$ **61**

assuming a Wolff-type rearrangement of two moieties of **56** to the methoxyketene **58.49** Dimerization of the probably formed cyclopropanone **59** may lead to either one of the dioxanes.

A similar but somewhat modified method of generating ethoxyketene **(50)** is the photolysis of mercury salts of diazo compounds. Under these conditions mercury bis(ethy1 diazoacetate) **(62)** cleaves off nitrogen and mercury leading to a ketene-type radical intermediate **63.** Ethoxyketene **(50)** is then formed by either an oxygen shift or an ethoxy migration followed

by hydrogen abstraction.⁵⁰ As in the former cases the ketene adds to the solvent yielding an ester **51.**

The suggested oxacyclopropene mechanism has been shown to occur to a certain extent (30%) along with the Wolff rearrangement: thermolysis of $[1-C^{13}]$ ethyl diazoacetate yields ethoxyketene labeled in both the C-1 or the C-2 positions.⁵¹ The same reaction path was observed in the decomposition of other diazo compounds; $52-55$ however, in other cases it has been excluded.⁵⁶⁻⁵⁸ Ethoxyketyl radicals and subsequently the ketene may also be formed in nonpolar solvents.59

Gas-phase thermolysis of methyl diazomalonate **(64)** at 280 **OC** gave mainly methyl acrylate **(67,** 92%). At this temperature, presumably the dimethyl dicarboxycarbene **(65),** initially formed, undergoes only intramolecular insertion to the four-membered lactone **66** which **is** thermolyzed further by **loss** of carbon dioxide to methyl acrylate (67), a known reaction.⁶⁰ At 500 °C the vield of **67** was found to be only **30%** while other reaction products appeared. The formation of methyl vinyl ether **(71)** may be attributed to a Wolff rearrangement of **65** to carbomethoxy-

methoxyketone **(68),** followed by **loss** of carbon monoxide, intra-molecular insertion, and cleavage of the @-lactone **70.** A further Wolff rearrangement of carbomethoxy methoxycarbene **(69)** gives methyl pyruvate **(72,** 8 %) and dimethoxymethylketene **(67)** and leads to the formation of methyl acetate **(75)67** via dimethoxycarbene **(74).**

A polymer which was formed in the temperature range of 280-360 °C and isolated showed only methoxy signals in the NMR spectrum; its structure has tentatively been attributed to a polymer of the carbomethoxymethoxyketene **(68).** In view of the results obtained by Schenck and Ritter⁴⁹ (see above), this polymer could correspond to their carbene-ketene tetramer **60** or **61.**

An analogous behavior has been observed in the thermolysis of 2,2-dimethyl-4,6-diketo-5-diazo-1,3-dioxane (Meldrum's Diazo, **76).** Wolff rearrangement leads to the ketene **77** which can be trapped by water and isolated as the known dioxolanone **79** after decarboxylation of **78.** Photolysis in benzene/methanol results in the formation of the ester **80.62**

A similar reaction scheme was found for the thermal decomposition of alkyl diazophenylacetates **(8 l).** The first formed carbenes **82** undergo both intramolecular insertion and Wolff rearrangement. In the former case the β -lactones 83 eliminate carbon dioxide and the styrenes **84** can be isolated. In the latter case an alkoxy phenylketene **85** is formed which loses carbon monoxide (as do the other alkoxycarbenes 68 and 73^{61,68}) to give the corresponding carbene **86.** The methoxyphenylcarbene undergoes a Wolff rearrangement as expected to form acetophenone **87.** However, if instead of a methoxy group ethoxy or isopropoxy substituents are present, the Wolff rearrangement fails to take place. An intramolecular 1,4 hydrogen transfer gives benzaldehyde **(88)** and an alkene **89.63** This alkoxycarbeneformyl rearrangement has its analogy in the rearrangement of cyclic aminimides as will be seen later.^{122,125}

The bis-ketene **91** can be generated by photolysis from 1,2-diethoxycyclobutene-3,4-dione **(90)** in ether. It eliminates carbon monoxide to give the intermediate carbene-ketene **92** which collapses to 1,2-diethoxycyclopropenone **(93).** The yield, however, was only about 10% **.64**

The most effective method for generating ethoxyketene **50** is that of Strausz and his co-workers, who use the classical method of dehydrochlorination of ethoxyacetyl chloride **(94).65** The 1,2-elimination can be effected with triethylamine at temperatures as low as -78 °C. While the ketene appears to be relatively stable at this temperature, it slowly dimerizes and

polymerizes at room temperature. Generated in situ in the presence of an olefinic compound, it undergoes a cycloaddition reaction to form cyclobutanones **95** in fairly good yields (see Table V). Temperatures between 80 and 100 °C are needed. As expected according to the Woodward-Hoffmann rules of orbital symmetry conservation, these cycloadditions proceed with high stereoselectivity.

The cycloaddition can also be effected by photolysis; how-

Oxygen-, Nitrogen-, and Sulfur-Substituted Heteroallenes **Chemical Reviews, 1978, Vol. 78, No. 5 575 Chemical Reviews**, 1978, Vol. 78, No. 5 575

TABLE V. Preparation of Ethoxycyclobutanones 9565

95	R1	R^2	R^3	R ⁴	yield, %
a	н	CH ₃	CH ₃	н	45
þ	CH ₃	н	CH ₃	н	31
c	н	н	CH ₃	CH ₃	30
d	CH ₃	CH ₃	CH ₃	CH ₃	43
е	н	н	OC ₂ H ₅	н	55
	н		(CH ₂) ₃	н	56
g	н		(CH ₂) ₄	Н	46

ever, yields are considerably lower. Stereospecific addition of ketoketenes to double bonds are well known $67-70$ and also seem to occur with monohalo- and monomethylketene. 71

C. S-Substituted Ketenes

Only two reports dealing with sulfur-substituted ketenes exist in the literature: photolysis of methyldiazothioacetate **(96)** generates a singlet carbene **97** which must then undergo a very rapid Wolff rearrangement; carbene insertion products are found to a very small extent only. The thiomethoxyketene **98** adds to the solvent to give methyl methylthioacetate **(99)** in 86% yield.72

$$
\begin{array}{ccc}\nO \\
O \\
CH_3SCCHN_2 & \xrightarrow{hv} & CH_3SCCH: \\
\hline\n96 & & 97 \\
\longrightarrow & CH_3SCH = C = 0 & \longrightarrow & CH_3SCH_2COOCH_3 \\
\hline\n98 & & 99\n\end{array}
$$

Another successful approach to the synthesis of sulfenylketenes has recently been reported.72 Derivatives of Meldrum's acid (2,2-dimethyl-1,3-dioxan-4,6-dione) are known to fragment thermally into carbon dioxide, acetone, and ketene. Thus, pyrolysis of the 5-methyl-5-methylthio compound **lOOa** at 410 *OC* generated the ketene **10la** which could be trapped with aniline vapor to give 2-methylthiopropananilide (102, 35%). On pyrolysis at 600 **OC** the corresponding 5-phenylthio compound **100b** gave a mixture of 2-methylbenzo[b]thiophen-3(2H)-one **(103)** and phenyl vinyl sulfide **(105),** the latter being formed by thermal carbon dioxide elimination from **101b** and rearrangement of the resulting thiophenylmethylcarbene (**104).73**

111. Carbodiimides

A. N-Substituted Carbodiimides

The reaction of phosphoramidate anions with carbon dioxide leading to isocyanates⁷⁴ can be modified by replacing the amidate by hydrazidate **106** and the carbon dioxide by an isocyanate molecule. Under these circumstances aminocarbodiimides **107** are formed (method A).⁷⁵ They show a rather interesting behavior: while distillable liquids, on standing they crystallize to dimers whose structures have been interpreted as 1,3-bis(di-

TABLE VI. Monomeric and Dimeric Aminocarbodiimides 107 and 108

		107		108	
R	R1	bp. °C torr	vield. %	mp, ۰c	method
CH3	$C(CH_3)_3$	$65 - 67(11)$	83.4	$142 - 143$	A.B
CH ₃	t -Oct	59-60 (0.45)	51.3	а	A.B
$-(CH2)5 -$	C(CH ₃) ₃	$70 - 72(0.4)$	30.0	$125 - 126$	в
C_2H_5	CH ₂	b			С

No dimer obtained.'^{o o} Unstable.

alkylamino)-2,4-bis(alkylimino)-1,2-diazetidines **(108).76** This dimerization process is reversible: upon heating the monomer reappears. The chemistry of both the monomeric **107** and the dimeric species **108** has not been explored extensively; see Table VI. Treatment with amines gave the corresponding aminoguanidine derivatives **109.** Hydrogenation failed to take place; even when it was carried out in the presence of platinum oxide catalyst at 1000 psi and 50 *OC,* only ethoxyisoureas **110** were obtained,76 while hydrolysis formed the semicarbazides **11 1.**

Two other methods lead also to aminocarbodiimides **107:** dehydrosulfurization of the aminothioureas **112** (method B) with yellow mercuric oxide⁷⁷ and treatment of the dialkylaminotetrazolium fluoroborates **113** with triethylamine (method C).⁷⁸

The monomer can also be benzylated with benzyl chloride to give a water-soluble, stable carbodiimide salt **114** which, on standing in water for several hours, is converted to a quaternary semicarbazide **115.** Attempts to desulfurize 1-(1,3,4,6-0-te- traacety l- β - $\text{D}\text{-}$ glucos-2-yl)-4-phenyl-3-thiosemicarbazide with mercuric oxide to the aminocarbodiimide failed.79

An interesting ring conversion which could involve an aminocarbodiimide intermediate has been reported by Stolle.⁸⁰ Thus, 5-aminotetrazole **(1 16),** when treated with boiling acetic anhydride, eliminated nitrogen; the isolated product was found to be 2-acetylamino-5-methyl-l,3,4-oxadiazole **(120).** Even though a nitrene intermediate **117** has been suggested, it seems to be more reasonable to assume a concerted rearrangement-elimination-type mechanism leading to the unsymmetrically substituted carbodiimide **118** which is then acylated to 119. Other tetrazoles^{81,82} and triazoles^{83,84} are known to behave in the same way upon pyrolysis.

KArylaminocarbodiimides **(123)** have been obtained as

125

NHCOCH₃ transient species only by acid-induced rearrangement of the hydrazidic azides **122.** They exist in open-chain form when synthesized by nucleophilic substitution of bromide with azide ion from the hydrazidic bromides **121.85** (Treatment of hydrazidines with nitrite leads only to the cyclized products (tetrazoles).^{81,82}) The diimides are hydrolyzed to the semicarbazides **124** in aqueous medium or trapped by trifluoroacetic acid to give the acetylated semicarbazides **125** after rearrangement.

IV. Isocyanates

A. N-Substituted Isocyanates

The first approach to the synthesis of amino isocyanates was based on the ease of hydrogen chloride elimination from N,Ndiphenylhydrazidic acid chloride **(126).88** There is, however, no convincing evidence (besides the odor) given for the existence of a free amino isocyanate **127.**

$$
\begin{array}{ccc}\n & 0 & \\
 & \bigcap_{140 \text{ °C}} & \\
 (C_6H_5)_2NNH \text{ -- } C & \xrightarrow{-HCl} & \\
 & 126 & \\
 & & 127 & \\
\end{array}
$$

Already in the early **20s** Stolle recognized that diphenylcarbamoyl azide **(128a)** rearranges readily upon heating with the elimination of nitrogen (Curtius rearrangement⁸⁹) and subsequent intramolecular condensation to 1-phenylindazolone **(130a)** (see Table VII). He proposed diphenylamino isocyanate **(129a)** as an intermediate. On thermolysis in ethanol the isocyanate was intercepted by the solvent giving the carbazic ester **131;90-92** when humidity was present it was hydrolyzed and decarboxylated to the hydrazine which trapped another isocyanate moiety to give 1,1,4,4-tetraphenylcarbazide (132a).^{91,92} He investigated a number of cases of diaryl- and alkylarylcarbamoyl azides **128b-e** and found the ring closure to be general. In some instances a dimer of **129** has been

In a later examination of this thermal Curtius rearrangement Baiocchi^{95,96} failed to find any dimeric products. Instead he isolated various amounts of N-substituted benzimidazolones **134**

TABLE VII. Thermal Decomposition of Carbomoylazides 128, Formation of lndazolones 130, Benzimidazolones 134, and Dimeric Amino Isocyanates 133

						indazolones 130		benzimidazolones 134		dimers 133
128	R ¹	R^2	R ³	R ⁴	yield, %	$mp, \overline{°C}$	yield, %	mp, °C	yield, %	mp, °C
а	н	н	н	C_6H_5	97 ^a 90 ^b	209, ª 206-207b			g	g
b	Н	H	н	CH ₂ CH ₅	99, c 66.9 d	$167^{c,d}$	6.7 ^d	$197 - 198$ ^d		
c	н	н	н	CH ₃	g	154 ^e				
đ	H	н	H	C_2H_5	68 ^e	134 ^e				
е	Η	н	CH ₃	CH ₃	31 ^e	240 ^e			11e	160 ^e
	н	н	CH ₃	C_2H_5	10 ^e	175 ^e			28 ^e	149 ^e
g	н	н	CI	$CH2C6H5$		201'		190'		
h	н	CI	H	$CH_2C_6H_5$		229 ^t				
	н		$-(CH)4$	C_2H_5	50 ^c	195c				
k	н		$-(CH)4$	C_6H_5	58 ^c	267c				
	CH ₃	н	H	p -CH ₃ C ₆ H ₄	31, c51d	$202^{c,d}$	5.1 ^d	$223 - 224$ ^d	11 ^c	202c
m	CH ₃	н	н	$CH_2C_6H_4$	63.1 ^d	$180 - 181$ ^d	9.5 ^d	$185 - 186$ ^d		
n	CH ₃	H	H	C_2H_5	g	156c				
۰	OCH ₃	н	H	$CH2C6H5$	15.2 ^d	189-190, d 187 f	35.6 ^d	178-179. ^d 189 ¹		
P	OCH ₂ CH ₃	H	H	$CH_2C_6H_5$	12.3 ^d	$196 - 197$ ^d	43.1 d	$178 - 179$ ^d		
q	$O(CH2)3CH3$	H	H	$CH2C6H5$	7.5 ^d	$148 - 149$ ^d	48.3 ^d	$142 - 143$ ^d		
r.	CI	н	н	$CH2C6H5$	46.4 ^d	206-207, d 213 f	5.3 ^d	$179 - 180$ ^d 176 ^t		
s	NO ₂	н	н	$CH2C6H5$	37d	250 d,f	1.6 ^d	$234^{d,1}$		
ŧ	$CO(CH2)2CH3$	H	н	$CH_2C_6H_5$		206'				
u	$CO(CH2)3CH3$	H	H	$CH2C6H5$		177'				
٧	$-(CH)4 - h$		H ^h	C_6H_5	96c	234c				
w	$-(CH)4 - h$		H ^h	$-C_{10}H_7$	94°	254c				
x	4-chlorophenyl			$CH2C6H5$		223'				

a Reference 92. ^b Reference 97. ^c Reference 94. ^d Reference 98. ^e Reference 93. ^f Reference 95. ^g Not indicated. ^h Not sure whether 4,5-benzindazolone or 5,6 isomer.

along with the indazolones **130.** This observation has been confirmed by two Japanese groups.⁹⁷⁻⁹⁹ The thermal decomposition of all these azides does not seem to involve a nitrene intermediate. Typical nitrene products (insertion or addition) have never been observed. Apparent exceptions have been dealt with by Lwowski.¹⁰⁰ Most likely the reaction proceeds by a concerted S_N ² displacement on the azide β -nitrogen in **128** either by the aromatic ring to give the benzimidazolones **124** or by the "amide" nitrogen to give the amino isocyanate **129** which subsequently undergoes intramolecular electrophilic substitution to the indazolone derivative **130.** It seems that the nucleophilic displacement of nitrogen by the aromatic rings is strongly favored when the R¹ position of the aromatic ring carries an electrondonating substituent. The direct cyclization (without Curtius rearrangement) is further enhanced by the size of the aliphatic chain attached to the oxygen in this position, as Table Vlll shows.

Thorough analysis of some of these reaction mixtures led to the isolation of several other products.^{98,99} It was found that once formed, benzimidazolone 134a-c could trap another amino isocyanate moiety to form the corresponding hydrazinocarbonyl substituted benzimidazolones 135a-c from which the original benzimidazolones 134a-c could be set free by heating the adducts 135a-c with sodium ethoxide in ethanol in a sealed tube.⁹⁸ **A** similar addition-elimination can be effected by treating benzimidazolones 134 with isocyanates or urethanes to give the aminocarbonylbenzimidazolones 136. Formation of the 1,2,4-0xadiazole 137c probably arises from a 1,3-dipolar cycloaddition involving the carbon-nitrogen double bond of the amino isocyanate and a formal carbamoylnitrene (or the initial azide with concerted nitrogen elimination).

Similar reactions of ethoxycarbonylnitrene with allenes, ¹⁰¹ alkynes, 102,103 and nitriles $^{104-107}$ are known. However, as the transformation of N-acylaziridines to oxazolines by ring expansion¹⁰⁸⁻¹¹² and the formation of 1,3,4-oxadiazoles by cyclization of nitrilimines¹⁰⁴ are known reactions, formation of diaziridinone 139d or an intermediate betaine 140a,c could also be responsible for the formation of 1,2,4-triazolidinediones $138a$,c. 99

The addition of isocyanates to benzimidazolones mentioned above⁹⁸ has its analogy as has been shown recently. Thus, thermolysis of diphenylcarbamoyl azide 128 in boiling phenyl isocyanate gave a quantitative yield of 1-phenyl-2-(N-phenylcarbamoy1)indazolone (142) which, upon heating, released the phenyl isocyanate moiety re-forming the indazolone 130a. When

this was boiled with excess phenyl isocyanate the adduct 142 was formed again.¹¹³ This common behavior of benzimidazolones 134 and indazolones 130 suggests that the structure of yet another dimeric species of certain diaryl- and alkylarylamino isocyanates 129 which were obtained by Stolle^{93,94} probably do not correspond to the symmetrical diazetidinedione 143, the

well-known dimer of isocyanates,¹¹⁴ proposed by Lieber.¹¹⁵ Heating the dimer **133** with sodium hydroxide, methanol, or ethanol in a steel bomb at 250 °C yielded the corresponding indazolone **130,** while boiling it in aniline gave diphenylurea **(144),** indazolone **130,** and the semicarbazide **145.** Such a scheme may be expected by assuming an indazolone-isocyanate adduct **133** as a dimeric form of **129.** It would also explain the fact that an unspecified amount of tetraphenylsemicarbazide **132a** was found when the "free diphenylamino isocyanate" *⁸⁸* was reacted with diphenylhydrazine (see above).

When diphenylcarbamoyl azide **128** is boiled with various alcohols the azide-displacement reaction competes with the Curtius rearrangement yielding urethanes in the former and carbazates in the latter case.

A useful synthetic application of this azide thermolysis in alcohols has been reported.¹¹⁵ Asymmetrical diphenylhydrazine **(147)** can be made in high purity (difficult to get in other ways¹¹⁷⁻¹²¹) by performing the thermolysis in tert-butyl alcohol; the resulting carbazate **146** is easily hydrolyzed and decarboxylated.

$$
\begin{array}{cccc}\n\langle C_6H_5\rangle_2NCON_3 & \xrightarrow{ \Delta & & \langle C_6H_5\rangle_2NNHCOOC(CH_3)_3\\ \n128a & & 146\\ \n& & \xrightarrow{HCl}& \langle C_6H_5\rangle_2NHNH_2 \cdot HCl\n\end{array}
$$

Dialkylcarbamoyl azides **148** also undergo a Curtius rearrangement upon photolysis¹²²⁻¹²⁴ and flash vacuum thermolysis.¹²⁵ Isolation of the products and analysis showed them to be derivative of a transient amino isocyanates **149.** In methanolic solution they are trapped to give carbazates 150,¹²³ while in aprotic solvents the amino isocyanates 149 dimerize¹²² or add to other heterocumulenes such as isocyanates¹²² or carbodiimides¹²⁴ present in the photolysis mixture. The compounds formed have been identified as 1,2,4-triazolidine-3,5-dione-1,2-aminirnides **(151)** or **152,** respectively, based on chemical behavior and spectroscopic data¹²⁶ (see Tables IX and X).

Thermolysis of **148** under high vacuum affords only the dimers **151** in yields as high as 93%. The relatively low yields of **151b,c** are explained by a subsequent thermal rearrangement which takes place under these particular conditions.¹²⁵ Thus, one of the substituents on $N¹$ in the aminimide 151 is eliminated as alkene; the corresponding 2H-triazolidines 157b,c have been isolated. 122,125

Treatment of phosphorohydrazidate anion **153** with carbon

TABLE IX. Dimeric Amino Isocyanates 151

dioxide resulted in carboxylation to **154** which then rearranges to a phosphoric acid derivative and the dialkylamino isocyanate **149b** which was isolated as its dimer as in the fomer case.^{126,129}

 \sim

a Not indicated. b Only Stevens rearrangement product 156 obtained.

TABLE XI. Adducts of Amino lsocvanates and Acetvlenes 163131,137

163	R	R1	R ²	mp, ۰c	yield, %
a	CH ₃	н	COOCH ₃	192-193	67
b	CH ₃	C_2H_5	C≡CC ₂ H ₅	78	40a
c	CH ₃	C_6H_5	н	207	83
d	CH ₃	C_6H_5	CH ₃	202	67
е	CH ₃	C_6H_5	COCH ₃	176	68
f	CH ₃	C_6H_5	COOCH ₃	158	40
g	CH ₃	COOCH3	COOCH ₃	128	76
h	CH ₃	$1-C5NH4$	н	220	69

a Exact structure not chemically established.

Again, the monomeric species can be trapped when the reaction is quenched with another isocyanate.

Another route leading to amino isocyanates **149** is the pyrolysis of 1,l-dialkylcarbazates **150** in the presence of phosphoric acid catalyst at 200 °C.¹²⁶ Under these conditions the initially formed aminimides **151** or **152** respectively convert to 1,2-dimethyl-4-substituted-triazolidinediones **155** or **156** $(R^1 =$ **0),** or the 1,2,4-triazolidin-3-one-5-thiones **156 (R1** = **S)** when an isothiocyanate is present in the pyrolysis mixture.¹²⁶ This Stevens-type rearrangement¹³² is known to occur in other molecules containing a similar betaine-type moiety^{133,134} and has been realized for other amino isocyanate adducts as well. 126, 127, 129

A closely related reaction is the pyrolysis of l-alkylsemicarbazides **(158);** the products obtained were believed to be the triazolidinediones **161.135** This could involve an intermediate monosubstituted alkylamino isocyanate **159.** Finally, l-phenylcarbazate **160** eliminates ethanol upon heating and the same type of compound, 161, has been isolated.¹³⁶

A very elegant method of generating amino isocyanates **149** is based on the facile thermal reversibility of the cycloaddition product of amino isocyanates 149 and bulky isocyanates, i.e., when a bulky substituent is attached to position **4** of the triazo-

a Containing minor impurities.

lidine derivative **152** such as $R' = \text{tert-butyl}^{124}$ or tert-octyl.¹²⁶ Thus, when **152a** or **h** are heated to above **60'** they dissociate to their parent compounds. The amino isocyanates **149a,h** dimerize to the aminimides **151a,h** when no other reactive substrate is present, although, in the presence of other isocyanates, isothiocyanates (as seen above $124,125,130$), carbodi $imides, ¹²⁴ acetylenes¹³⁷$ or cyanates,¹³⁸ cycloaddition with these partners can compete effectively with dimerization. A great variety of new heterocyclic compounds have been prepared in this manner as Scheme I shows (see also Tables **XI** and XII). Idine derivative **152** such as R' = *tert*-bu

Thus, when **152a** or **h** are heated to abov

to their parent compounds. The amino

dimerize to the aminimides **151a,h** whe

substrate is present, although, in the pre

anates

It should be noted that in contrast to the photolytically generated dimethylamino isocyanate **149,** the thermally generated species affords only one adduct **162** with carbodiimides. When

carbodiimide was present in the photolysis mixture, two different adducts **162** and **165** were formed in almost quantitative yield in a 3:1 ratio¹²² (see Table XIII). If one considers the amino isocyanate as acting like an allylic anion, an addition in two directions is possible since relative orientations of the reacting partners in such cases are not governed by the "1,3-dipole" having a negative and a positive end.^{139,140} However, there seems to be some uncertainty about the structure of the minor product.¹³¹

The generality of the thermal dissociation of aminimides of types **152** and **162** is further illustrated by the behavior of compounds **162b** and **152n.**¹²⁴ They are both sources of dimethyl-

amino isocyanate **149a,** but the diisopropylcarbodiimide cannot be removed as easily as terf-butyl isocyanate. Furthermore, it competes with other addends for the dimethylamino isocyanate **149a,** for example, in the preparation of the isocyanate adduct **152;** thus refuxing **162b** in benzene with an excess of methyl isothiocyanate yields a mixture of **162b** and **152n.** Irradiation of

TABLE XIII. Adducts of Amino Isocyanates and Carbodiimides 162 and 165'*'

162			mp, °C			total yield,
165	R	R1	162	165	ratio	$\%$
а	CH ₃	C_2H_5	100-102	oil	3:1	95
b	CH ₃	FC ₃ H ₇	$141 - 143$	163-165	3:2	95
c	C_2H_5 ^a Not observed.	C ₂ H ₅	$88 - 89$	а		95

151b reverts the dimer to the monomer **149** which can be trapped with a protic solvent, e.g., methanol, to the carbazate **150** in 83% yield.122

When dimethylamino isocyanate **149a** is generated in the presence of phosphonium ylides, such as ethoxycarbonyl- and cyanomethylenetriphenylphosphorane, 1: 1 adduct **166** results. When dimethylam
presence of phospho
cyanomethylenetriph
152a - **149a**

It also reacts with less reactive phosphoranes as well as with phosphorus(ll1) compounds, but reversibly, and this leads to the complete irreversible dimerization of the amino isocyanate.¹²⁸ The well-known reaction of iminophosphoranes with isocyanates which give carbodiimides could not be extended to the amino isocyanates.

Recently a trimeric species of dimethylamino isocyanate has been found. When the tert-butyl adduct **152a** is well mixed with various amounts of 1-phenylindazolone and dry-thermolyzed for a few minutes at 170 *'C,* a mixture is obtained which contains, as main products, unchanged 1-phenylindazolone, the Stevens rearrangement product **155a** and up to 50% of 1,3,5-tris(dimethylamino)-1,3,5-triazidinetrione (167).¹¹³

A versatile synthesis of 1-substituted 4,5,6,7-tetrahydroindazol-3-ones adapted from Stolle's method⁹² has been reported. When cyclohexenylcarbamoyl azides **168,** readily available from the corresponding cyclohexenimine¹⁴¹ by reaction with phosgene^{$142,143$} and treatment of the acid chloride with sodium azide, are thermolyzed in boiling chlorobenzene, the intermediate amino isocyanates cyclize to the indazolines **170** (see Table XIV). The enhanced nucleophilicity of the β carbon in **169** appears to be responsible for the fact that ring closure takes place in the cyclohexene ring only, the alternative indazolone not being formed.144 The reaction fails when the

TABLE XIV. Preparation of Indazolines 170¹⁴⁵

170	R	mp, °C	yield, $\%$
а	CH ₃	178-181	76
ь	(CH ₃) ₂ CH	$225 - 227$	32
c	$CH3(CH2)3$	139-140	34
d	$(CH3)2CHCH2$	165-166	73
е	$C_6H_5CH_2$	188-188.5	57
	C _a H ₅	$213 - 214$	45
g	3.4 -Cl ₂ C _a H ₃	$208 - 218$	62

TABLE XV. Preparation **of** lrnidazolones 17214s

carbamoyl azide bears an N-allyl or terminally substituted propenyl group as in **171,** imidazolones **172** being mainly formed

Ö

170

in this case^{145,146} (see Table XV)

Again, a nitrene mechanism representing a high-energy pathway seems unlikely¹⁴⁹ while olefinic azides containing a double bond three carbon atoms removed from the azido group add intramolecularly to give stable triazolines which lose nitrogen forming cyclic imines and 1-azabicyclo[3.1 **.O]** hexane.146

Thermolysis of imidazolidides **175,** easily prepared by reacting carbonyldiimidazole **173** and the appropriate disubstituted hydrazine **174,** results in elimination of imidazole and, as in previous cases,^{122,125,127} dimerization of the amino isocyanate **149.149** A possible indication that **149** is a true intermediate is that if the hydrogen atom at the carbonyl nitrogen is replaced by an alkyl substituent, the reaction rate of **175** with amines is considerably lowered. This type of reaction is commonly applicable to the synthesis of isocyanates from amines¹⁵⁰ as well as of other heterocumulenes.^{151,152}

Another useful method of making amino isocyanates lies in the ease of the $[2 + 2]$ cycloreversion of diazetidinones of type **177.** Thus N,Ndimethyl-Af-dimethylaminoformamidine **(176)** cycloadds to isocyanates forming the four-membered ring which

TABLE XVI. Preparation **of** 1,l **-Dirnethyl-4-aryl-l,2,4-triazolidine-3,5** dione-1,2-aminimides 152¹⁵³

152	R	mp, °C	yield, %
a	C_6H_5	179-181	81
b	4 -CIC ₆ H ₅	180-182	76
c	$4 - FC6H4$	156-158	66
d	$4-BrC_6H_4$	177-179	74
e	4 -CH ₃ C ₆ H ₄	153-155	47
	4 -OCH ₃ C ₆ H ₄	175-177	64
g	3 -OCH ₃ C ₆ H ₄	140-146	24
h	$3-SCH_3C_6H_4$	145-148	76
	3-COOCH ₃ C ₆ H ₄	159-162	65
	$3-CIC_6H_4$	168-169	33
k	3 -CF ₃ C ₆ H ₄	$143 - 145$	50
	2 -OCH ₃ C ₆ H ₄	166-173	20
m	$3,4$ -Cl ₂ C ₆ H ₃	163-165	22
n	3-CI-4-OCH ₃ C ₆ H ₃	170-175	25
٥	$3,5-(CH3)2C6H3$	158-161	32
р	$3,5-(OCH3)2C6H3$	134–136	54

reverts orthogonal to the addition direction to another formamidine **178** and dimethylamino isocyanate **149a.153** The latter

dimerizes or reacts with excess isocyanate in the usual manner to form aminimides **151a** and **152**^{122,124,126,130} (see Table XVI). When phenyl isothiocyanate is used, the corresponding dithioneaminimides **180** result via dimethylamino isothiocyanate **179.**

Mesoionic thiadiazoles of type **181** can undergo a ring-opening reaction (light-induced) to the thiobenzoylmethylamino isocyanate and **182.154-157**

The intermediates can eliminate isocyanato or isothiocyanato radical, respectively; and methylthiobenzamide **183** is isolated in both cases.¹⁵⁵ When the reaction was monitored in acetonitrile and Nujol by means of IR spectroscopy, absorptions at 2260 and 2060 cm-', were observed and interpreted as NCO and NCS stretching,¹⁵⁶ respectively. In a later reexamination, however, these interpretations were considered dubious owing to observation of a new product.¹⁵⁴ Thus, when the photolysis was carried out in moist acetonitrile, formation of N -methyl- N thiobenzoylhydrazine **(184)** was observed, again, in both cases. Furthermore the intermediate amino isocyanate **182** could be trapped with ethanol to the hydrazidic ester **185** which can be hydrolyzed to **184.** The two IR bonds most probably were due to the solvent (acetonitrile (2260 cm^{-1})) and carbonyl sulfide $(2060 \text{ cm}^{-1}).$

Evidence for the existence of diarylmethylenimino isocyanate **(187)** comes from trapping of both intermediates formed in the thermolysis of 2-hydrazono- Δ^3 -1,3, 1-oxadiazolines **(186)** in the presence of aryl isocyanates.¹⁵⁸ The diazo derivative 188 adds to 2 equiv of aryl isocyanate to the oxindole **189.** The imino isocyanate **187** reacts with two molecules of the trapping agent to the tetraazabicyclooctanetrione **191** by means of two subsequent [2 + 31 cycloadditions via aminimide **190** which closely resembles that found in reactions of dialkylamino isocyanates with isocyanates, 124,126,127,130,133

Furthermore, the proposed decomposition mechanism parallels that of 2-arylimido- Δ^3 -1,3,4-oxadiazolines which also proceeds through a 1,3-dipolar cycloreversion forming an isocyanate moiety and the corresponding diazomethane.^{159,160} In the absence of reactive scavengers the 1,2-diazetidin-3-0ne-1.2-aminimides **192** are formed.161

B. 0-Substituted Isocyanates

Several unsuccessful attempts to prepare the monoxime of carbon dioxide or its O-alkyl derivative were made^{162,163} before Staab tried to apply his general method of making isocyanates.¹⁵⁰ Imidazolidides of the type 193, which are easily accessible by reacting the appropriate amine with carbonyl diimidazole, decompose on heating, setting free imidazole and an isocyanate **194.**

In the case of **193** $(R =$ benzyloxy) 1,3,5-tribenzyloxy-2,4,6-trioxahexahydrotriazine-l,3,5-trione **(195)** was isolated in high yield. **164** Presumably the intermediate benzyloxy isocyanate **161** trimerized. In view of the results obtained by Reichen¹¹³ (see above), it may well be that the imidazolidine catalyzes this trimerization. Analogous trimers were isolated when *N*alkoxyphosphoramidates **196** were treated with carbon dioxide.165 This is a modification of Wadsworth's isocyanate synthesis.74

Ethoxy isocyanate **198** can be formed, as an intermediate on photolysis of ethoxycarbonyl azide **197,** in protic solvents only, however, with which it reacts immediately. Thus a 13% yield of ethoxymethyl carbamate **199** has been isolated when the photolysis is performed in methanol.166 Flash photolysis of **197** failed to give the rearranged isocyanate.¹⁶⁷

C₂H₅OCON₃
$$
\frac{hv}{CH_3OH}
$$
 [C₂H₅ON=C=O]
\n197
\n198 + nitrogen products
\nC₂H₅ONHCOOCH₃
\n199

C. S-Substituted Isocyanates

Phenylchlorothioformate **(200)** reacts vigorously with sodium azide in water with gas evolution (nitrogen and carbon dioxide). The two main products isolated, diphenyl disulfide **(202)** and Kbenzenesulfenylurea **(203),** suggest a thiophenyl carbonto-nitrogen migration. Whether or not intermediate phenyl thioisocyanate **(201)** appears along the reaction paths is not clear. 168

Mercaptans of type **204** react with silver cyanate to form the corresponding thiaisocyanates **205.** While the trichloro species **205a** trimerizes instantaneously to the isocyanurate **206a,** the two other can be isolated as monomers. **205c** di- or trimerizes slowly at room temperature to the corresponding diazetidinedione **207c** or the isocyanurate **206.169s170** Hydrolysis of the free thiaisocyanates **205b,c** yields the ureas **208b,c** eliminating carbon dioxide as does **2O7c.l7O**

Similarly, trichloromethylthiosulfenyl chloride **(209)** gives isocyanate **210** upon treating with silver cyanate. It is a stable, distillable liquid (bp 60 \degree C (0.1 Torr)) and can be hydrolyzed to the urea **211,** alcoholyzed to the urethane **212,** and aminolyzed to unsymmetrical ureas **213** as normal isocyanates can.171

When trifluoromethyl dithiofluoroformate **(214)** is treated with chlorine and resulting trifluoromethylmercaptochlorofluoromethanesulfenyl chloride **(215)** reacted with silver cyanate at -20 °C, the isocyanate 216 can be isolated. In the presence of humidity it forms the urea 217.¹⁷²

Fluorocarbonylsulfenyl chloride (218a)^{173,174} and the chloro compound **218b** both exchange first the sulfenyl halide ion in the presence of silver cyanate to form the isocyanates **219a,b.**

Careful hydrolysis gives the ureas **220.** The second carbonyl halide can be substituted by a methoxy group on methanolysis to give the methoxycarbonylsulfenylurea **221.** Again, **219a** dimerizes slowly to the diazetidinedione **222a** if no trapping agent is present.175

V. lsofhiocyanafes

A. 0-Substituted lsothiocyanates

Reaction of thiocarbonyldiimidazole **(223)** with O-benzylhydroxylamine gave the imidazolidine **224** as did the corresponding oxo homolog **194.** However, in this case the thermal elimination of imidazole and formation of the benzyloxy isothiocyanate **(225)** could not be effected.

Even prolonged heating in cyclohexylamine did not afford Kcyclohexyl-N '-benzyloxythiourea, a compound whose analysis indicated a cyclohexylammonium salt of **224** was isolated in quantitative yield.176

B. N-Substituted lsothiocyanates

A Russian group¹⁷⁷ reported formation of pentamethyl eneamino isothiocyanate **(226)** by elimination of hydrogen sulfide from N-piperidinodithiocarbamic acid (227). A later

reexamination showed the product to be the *N,* N-pentamethylenehydrazinium salt **228.'78**

While the thermal hydrogen sulfide elimination did not work, the chemical elimination succeeded. Thus, treatment of N, *N*diphenyldithiocarbazic acid (229) at -80 °C with dicyclohexylcarbodiimide gave an intermediate diphenylamino isothiocyanate (230) which upon warming rearranged spontaneously to 2-thiocyanatophenylphenylamine **(231). 179** Evidence for the existence of 230 was based on its IR absorption at 1956 cm⁻¹ and the trapping experiment with aniline to form 1,1,4-triphenylthiosemicarbazide **(232).**

 $(C₆H₅)₂$ NNHCSSH

The reaction of primary and secondary amines with thiocarbazate ester **233** to give the thiosemicarbazides **235** may proceed through the intermediate amino isothiocyanate 234.¹⁸⁰ This is supported by the fact that monosubstituted dithiocarbamates easily afford the corresponding isothiocyanates which subsequently react with an amine; on the other hand, the fairly great stability of N,N-disubstituted dithiocarbamates toward amines is well established. $181-185$

$$
NH2NHCSSCH3 \xrightarrow{-CH3SH} NH2N \xrightarrow{P:IR2NH2 NHC} NH2NHCNR2 \xrightarrow{R:IR2NH2 NHCNR2 \xrightarrow{R:235
$$

Another way of preparing amino isothiocyanates is by heating N,N-dialkythiocarbazoylimidazoles **(236)** in vacuo.178,186,187 Again, this is a variation of Staab's method^{150,152,164} (see above).

As in the case of the corresponding dialkylamino isocyanates **149122-125,1263133** compounds of type **237** dimerize, even though they show an enhanced stability compared with **149;178** dimerization of 237 proceeds at a negligible rate at -80 °C while the diisopropyl derivative needed several hours at room temperature. It has been suggested that this isomerization passes again through the open-chain intermediate **238,** but experimental proof is still lacking.18' **A** linear intermediate **238** has been observed in solution which yields two types of isomers **239** and **240** of which the former, **239,** is converted to **240** at room temperature.¹⁸⁶ A variety of addition reactions with amines, hydrazines, and thiols has been performed with 237^{186,188} (see Table XVII).

The formation of **1.1-diisopropyl-4-arylthiosemicarbazides 242s-u,x,y** was not influenced by the presence of hydroxy, hy-

droxymethylene, hydroxycarbonyl, and amido groups, while in the case of **241v,w** the attack occurred at the thiol function to give the corresponding aminophenyl N,N-diisopropyldithiocarbazates 242v,w.¹⁸⁸ In the aliphatic series, 237d invariably reacted with both the amino and the thiol function even when the reacant was present in excess.

Reaction with hydrogen sulfide gave the thiocarbazoyl sulfide 243;¹⁸⁹ with hydrogen selenide the corresponding selenothiocarbazic acid **244** resulted, which on exposure to air converted to the bisthiocarbazoyldiselenide 245 ($X =$ Se). Similar treatment of **237d** with hydrogen telluride resulted directly in the formation of ditelluride 245 ($X = Te$). ¹⁹⁰

Thioureas as well as secondary or tertiary thioamides failed to undergo addition, while thiobenzamide **(246a),** 4-pyridi-

TABLE **XVII.** Reactions **of** Diisopropylamino lsothiocyanate 237d with Varlous Amines **241**

Solvents used for recrystallization: ^a Ethanol. ^b Ethanol-water. ^c Cyclohexane.

nethiocarboxamide **(246b),** and 2-hydroxythiobenzamide **(246c)** afforded the sulfide **243** and the corresponding nitriles **248ac.189**

An intermediate thioimino ether **247** may be formed, by attack of the sulfur at the isothiocyanato carbon instead of the nitrogen, which then reacts with a second molecule of **237d** through one of the sulfur atoms, again.

As in the case of aryl isocyanates (see above), phenyl isothiocyanate adds to N , N -dimethyl- N [']-dimethy laminoformamidine **(176)** to a diazetidinethione **(249)** which then dissociates into dimethylamino isothiocyanate **(237a)** and formamidine **178.** The former dimerizes to the aminimide **180** and rearranges to 1 methyl-3-methylthio-4-phenyl-Δ²-1,2,4-triazoline-5-thione **(250)** as in the case of amino isothiocyanate dimers **239.18'**

References

-
-
- H. Ulrich, *Chem. Rev., 65, 369 (1965).*
N. Onodera, *Kagaku (Kyoto), 1*9, 1240 (1964).
R. Graf, *Angew. Chem. Int. Ed. Engl., 7*, 172 (1968).
G. I. Derkatsch, *Angew. Chem., Int. Ed. Engl., 8*, 421 (1969).
O. Tsuge, *Ka*
-
-
- (6) K. **A.** Nuridzhanyan, *Usp. Khim.,* 39, 259 (1970). H. Chaimovich. R. J. Vaughan, and F. H. Westheimer, J. *Am. Chem. SOC.,* (7) 90, 4088 (1968).
- (8)
- i9ì
- (10)
- R. R. Rando, *J. Am. Chem. Soc.*, **92,** 6706 (1970).
N. T. Buu and J. T. Edward, *Can. J. Chem.,* **50,** 3719 (1972).
R. Husigen and E. Funke, *Angew. Chem.,* 79, 320 (1967).
H. Gotthardt, R. Huisgen, and F. C. Schäfer, *Te* (11) (1963).
- H. Staudinger, Justus *Liebigs Ann. Chem., 356,* 51 (1907).
- J. C. Sheehan and J. J. Ryan, J. *Am. Chem. Soc.,* 73, 1204 (1951). E. Schmidt et al., German Patent 960458 (Bayer); *Chem. Zentralbl.,* 129, (13)
- (14) 6967 (1958).
- R. Huisgen, *E.* Funke. F. C. Schafer, and **R.** Knorr, *Angew. Chem.,* 79, (15) 321 (1967).
- **A.** Holm, N. H. Toubro, and H. Harrit. *Tetrahedron Lett.,* 1909 (1976).
- (17) R. M. Moriarty and R. Mukherjee, Tetrahedron Lett., 4627 (1969).
- (18) R. M. Moriarty, R. Mukherjee, 0. L. Chapman, and D. Eckroth, Tetrahedron Lett., 397 (1971).
(19) R. Mukherjee and R. M. Moriarty, *Tetrahedron*, **32,** 661 (1976).
-
-
- (20) *S.* Winter and G. Pracejus, Chem. Ber., 99, 151 (1966). (21) J. C. Sheehan et al., J. Am. Chem. *SOC.,* 72, 3828 (1950). (22) J. C. Sheehan and G. D. Laubach, J. Am. Chem. *SOC.,* 73, 4752
- (1951)
- (23) J. c. Sheehan and J. J. Ryan, J. Am. Chem. *SOC.,* 73,4367 (1951). (24) J. C. Sheehan, H. W. Hill, and E. L. Buhle, J. Am. Chem. Soc., 73, 4373
- (1951).
-
-
-
-
-
- (25) J. C. Sheehan and E. J. Corey, J. Am. Chem. Soc., **73,** 4756 (1951).
(26) L. Paul, P. Polczynski, and G. Hilgetag, Chem. Ber., **100**, 2761 (1967).
(27) S. M. Deshpande and A. K. Mukherjee, J. Chem. Soc. C, 1241 (1966) hedron, 23, 4769 (1967).
-
-
-
- (32) A. Bertho and J. Maier, *Justus Liebigs Ann. Chem.*, **498,** 52 (1932).
(33) H. Böhme, S. Ebel, and K. Hartke, *Chem. Ber.,* **98,** 1463 (1965).
(34) H. Pracejus and G. Winter, *Chem. Ber.,* **97,** 1373 (1964).
(35) 3822 (1952).
-
- G. Pracejus, *Justus Liebigs Ann. Chem.*, **622**, 10 (1959).
E. Müller and P. Heinrich, *Chem. Ztg.*, **95,** 567 (1971).
E. Müller and P. Heinrich, *Chem. Ztg.,* **96,** 112 (1972).
N. S. Wulfson et al. *Tetrahedron Lett.*, 95
-
-
- (40) P. H. Chen, *J. Org. Chem.*, 41, 2973 (1976).
(41) F. H. Westheimer et al., *J. Biol. Chem.*, **241,** 421 (1965).
- (42) W. v. Kirmse and L. Horner, Justus Liebigs Ann. Chem., 625, 34 (1959).
-
- (43) K. v. Molier and 0. **Suss,** Justus Liebigs Ann. Chem., 612, 153 (1957). (44) W. v. Kirmse, "Carbene Chemistry", Academic Press, New York and London, 1971. and references cited therein.
- (45) 0. P. Strausz, T. DoMinh, and H. E. Gunning, J. Am. Chem. *SOC.,* 90, 1660 (46) T. DoMinh, 0. P. Strausz, and H. E. Gunning, J. Am. Chem. *Soc.,* 91, 1261 (1968).
- (1969).
- (47) K. Bott, Angew. Chem., *Int.* Ed. Engl., 3, 804 (1964).
- (48) A. C. Day and M. C. Whiting, J. Chem. **SOC.** 6,991 (1967), and references cited therein.
- (49) G. 0. Schenck and A. Ritter, Tetrahedron Lett., 3189 (1968).
- (50) T. DoMinh, H. E. Gunning, and 0. P. Strausz, J. Am. Chem. **SOC.,** 89, 6785 (1967)
- (51) D. E. Thornton, R. K. Gosavi, and 0. P. Strausz, J. Am. Chem. *Soc.,* 92, 1768 (1970).
- (52) J. *G.* Csizmadia, J. Font, and 0. P. Strausz, J. Am. Chem. **SOC.,** 90, 7360 (1968).
- (53) *G.* Frater and 0. P. Strausz, J. Am. Chem. Soc., 92, 6654 (1970). (54) K.-P. Zeller, H. Meier, H. Kolshorn, and E. Mulier, Chem. Ber., 105, 1875
- (55) S. A. Martin and P. G. Sammes, J. Chem. *SOC.,* Chem. Commun., ¹¹ (1972). (1972).
- (56) K.-P. Zeller, Chem. Ber., 108, 3566 (1975).
- (57) *2.* Majerski and C. *S.* Redvanly, J. Chem. *SOC.,* Chem. Commun. 694 (1972).
- (58) K.-P. Zeller, *2.* Naturforsch., Teil *B,* 31, 586 (1976).
- (59) 0. P. Strausz et al., J. Am. Chem. **SOC.,** 96, 5723 (1974), and references cited therein.
- (60) R. Wheiand and P. D. Bartlett, J. Am. Chem. Soc., 92, 6057 (1970). (61) D. C. Richardson, M. E. Hendrick, and MI Jones, Jr., J. Am. Chem. *Sac..*
- 93, 3790 (1971). 42, 2931 (1977). (62) *S.* L. Kammula, H. L Tracer, P. B. Shevlin, and M. Jones, Jr., *J.* Org. Chem.,
- (63) W. Reichen and B. v. Wartburg, Helv. Chim. Acta, to be submitted for publication.
E. V. Dehmlow, Tetrahedron Lett., 1271 (1972).
-
-
-
-
-
-
-
- (64) E. V. Dehmlow, *Tetrahedron Lett.*, 1271 (1972).
(65) T. DoMinh and O. P. Strausz, *J. Am. Chem. Soc.*, **92**, 1766 (1970).
(66) R. Montaigne and L. Ghosez, *Angew. Chem.*, **80, 194** (1968).
(67) R. Huisgen, L. A. Feil
- (72) S. S. Hixson and *S.* H. Hixson, *J.* Org. Chem., 37, 1279 (1972). (73) R. F. C. Brown, F. W. Eastwood, and G. L. McMullen, Aust. J. Chem., 30,
- 179 (1977).
- (74) W. S. Wadsworth, Jr., and W. D. Emmons, J. Am. Chem. *SOC.,* 84, 1316 (75) W. *S.* Wadsworth. Jr., and W. D. Emmons, J. Org. Chem., 29, 2816 (1962).
- (1964).
- (76) D. M. Piautz, Thesis, South Dakota State University, 1971. (77) W. Weith, *Ber.,* 6, 1395 (1873); 7, **IO,** 1306 (1874).
- (78) D. M. Zimmermann, Thesis, Pennsylvania State University, 1970.
-
- (79) J. C. Jochims, Angew. Chem., 77, 454 (1965). **(80)** R. Stolle, E. Schick, F. Henke-Stark, and L. Krauss, Ber., 62, 1118 (1929).
- (81) P. A. S. Smith and E. Leon, J. Am. Chem. Soc., 80, 4647 (1958).
(82) P. A. S. Smith and J. Vaughan, J. Org. Chem., 23, 1909 (1958).
(83) T. L. Gilchrist, G. E. Gymer, and C. W. Rees, J. Chem. Soc., Perkin Trans.
-
- *1.* l(1975).
- (84) T. L. Gilchrist, C. W. Rees, and C. Thomas, *J.* Chem. *SOC.,* Perkin Trans. 1, (1975).
- (85) A. F. Hergarthy, J. B. Aylward. and F. L. Scott, J. Chem. *SOC.* C, 1967,

2587.

- A. F. Hergarthy, J. B. Aylward, and **F.** L. Scott, Tetrahedron *Lett.,* 1259 (1967).
- (87) J. M. Burgess and M. *S.* Gibson, Tetrahedron, 18, 1001 (1962).
-
-
- *S.* F. Acree, Ber., 36, 3154 (1903). T. Curtius, *2.* Angew. Chem., 27, 111, 213 (1914). F. L. Scott and M. T. Scott, J. Am. Chem. SOC., 79, 6077 (1957). (93) R. Stolle and M. Merkle, *J. Prakt. Chem.*, **227**, 275 (1928).
- (92) R. Stolle, Ber., 57, 1063 (1924).
-
-
- R. Stolle, N. Nieland, and M. Merkie, *J. Prakt. Chem.,* **116,** 192 (1927).
R. Stolle, N. Nieland, and M. Merkie, *J. Prakt. Chem.,* **117,** 185 (1928).
I. Baiocchi, G. Corsi, and G. Palazzo, *Ann. Chim. (Rome*), **55,** 116

-
-
- (96) G. Palazzo and G. Corsi, *Ann. Chim. (Rome*), **55,** 126 (1965).
(97) N. Koga, G. Koga, and J.-P. Anselme, *Tetrahedron,* **28,** 4515 (1972).
(98) T. Kametani, K. Sota, and M. Shio, *J. Heterocycl. Chem.,* 7, 807 (1970).
- (99) T. Kametani, Shibuya, and M. Shio, *J.* Heterocycl. Chem., 8, 889 (1971).
- (100) S. Patai, "The Chemistry of the Azido Group", W. Lwowski, Ed. Inter science, New York, N.Y., 1971, p 425 ff.
(101) R. F. Bleihoider and H. Schechter, *J. Am. Chem. Soc.*, **90,** 2131)
- (1968).
- (102) R. Huisgen and H. Blaschke, *Chem. Ber.,* **98,** 2985 (1965).
(103) R. Huisgen and H. Blaschke, *Tetrahedron Lett.,* 1409 (1964).
(104) T. Bachetti, *Gazz. Chim. Ital.*, **91,** 866 (1961).
-
-
- (105) R. Putner and K. Hafner, Tetrahedron Lett., 31 19 (1964). (106) R. Huisgen and H. Blaschke, Justus Liebigs Ann. Chem., 586, 145 (1965).
- (107) M. Bush, Ber., 35, 1562 (1902).

2621 (1974).

3193 (1928).

(1967).

 (1973)

 (1962)

(1976). (1972).

(1967).

1309 542 (1968).

- (108) H. Heine, Angew. Chem., 74, 712 (1962).
- (109) R. Huisgen, J. Sauer, **H.** J. Sturm, and J. H. Markgraf, Chem. *Ber.,* 93,2106 (1960).
-
-
- (110) R. Huisgen, *Angew. Chem.,* **72,** 359 (1960).

(111) W. Lwowski, and T. Maricich, J. Am. Chem. Soc., **86,** 3164 (1964).

(112) A. Mishra, S. N. Rice, and W. Lwowski, J. Org. Chem., **33, 481 (1968).**

(113) W. Reiche
-
-
-
-
-
-
-

Tetrahedron Lett., 3285 (1964). (124) W. J. *S.* Lockley, V. T. Ramakrishnan, and W. Lwowski, Tetrahedron *Lett,*

(126) W. S. Wadsworth, Jr., and W. D. Emmons. J. Org. Chem., 32, 1279 (127) W. Lwowski and R. A. DeMauriac, 155th National Meeting of the American Chemical Society, San Francisco, Calif., April 1968. Abstract P-056. (128) W. Lwowski and B. Walker, J. Chem. **SOC.,** Perkin Trans. *1,* 1975, (129) W. *S.* Wadsworth, Jr., and W. Bruxvoort, J. Chem. *Soc.,* Chem. *Commun.,* (130) V. T. Ramakrishnan and W. Lwowski, Tefrahedron Lett., 3249 (1974).

(132) T. *S.* Stevens, E. M. Creighton, A. B. Gordon, and M. McNiol, *J. Chem. Soc.,*

(133) *S.* Wawzonek and E. Yeakey, *J.* Am. Chem. *Soc.,* 82,5718 (1960). (134) H. P. Benecke and J. H. Winkel, Tetrahedron Lett., 3479 (1971).

(135) G. Pinner, *Ber.*, **21,** 1225 (1808).
(136) G. Heller, *Justus Liebigs Ann. Chem.,* **263,** 282 (1881).
(137) W. J. S. Lockley and W. Lwowski, *Tetrahedron Lett.,* 4263 (1974).
(138) W. Lwowski and W. Reichen, unpubli

(142) H. Breederveld, *Recl. Trav. Chim. Pays-Bas, 79, 4*01 (1960).
(143) J. P. Chupp and E. R. Weiss, *J. Org. Chem., 33, 2357 (1968).*
(144) G. H. Alt and J. P. Chupp, *Tetrahedron Lett.,* 3155 (1970).

(139) R. Huisgen, *J. Org. Chem.*, **33,** 2291 (1968).
(140) R. Huisgen, H. Seidl, and I. Brühning, *Chem. Ber.*, **102,** 1102 (1969).
(141) H. Weingarten, J. P. Chupp, and W. A. White, *J. Org. Chem.,* **32,** 3246

(145) J. P. Chupp, *J. Heterocycl. Chem.*, **8,** 557 (1971).
(146) J. P. Chupp, U.S. Patent 3,723,455; *Chem. Abstr.*, **78,** 159 599j

(147) G. L'Abbe, *Chem. Rev.*, **69,** 347 (1969).
(148) A. L. Logothetis, *J. Am. Chem. Soc.*, **87,** 749 (1965).
(150) H. A. Staab and W. Benz, *Justus Liebigs Ann. Chem.*, **648,** 72 (1961).
(151) H. A. Staab and D. W. Müll (152) H. A. Staab and G. Walther, Justus Liebigs Ann. Chem.. 857, 104

(153) K. Seckinger, *Helv. Chim. Acta*, **56,** 2061 (1973).
(154) A. Holm, N. H. Toubro, and N. Harrit, *Tetrahedron Lett.*, 1909 (1976).
(155) R. M. Moriarty and R. Mukherjee, *Tetrahedron Lett.*, 4627 (1969). (156) R. M. Moriarty, R. Mukherjee, 0. L. Chapman, and D. **R.** Eckroth, Tetra hedron Lett., 397 (1975).
(157) R. Mukherjee and R. M. Moriarty, Tetrahedron, 32, 661 (1976). (158) **K.** Ramakrishnan, J. **B.** Fulton, and J. Warkentin, Tetrahedron, 32, 2685 (159) *S.* L. Lee, A. M. Camerson, and J. Warkentin, Can. *J.* Chem., 50, 2326

(125) W. Reichen, Helv. Chim. Acta, 59, 2601 (1976).

(131) W. Lwowski, private communication.

-
- (160) P. R. West and J. Warkentin, *J.* Org. Chem., 34, 3233 (1969). (161) P. C. Ip, K. Ramakrishnan, and J. Warkentin, Can. *J.* Chem., **52,** 3671 (1974).
- (162) A. F. McKay, **D.** L. Garmaise, G. **Y.** Paris, and *S.* Gelblum, Can. *J.* Chem., **31,** 343 (1960).
- (163) L. W. Jones and L. Neuffer, *J.* Am. Chem. Soc., 39,652 (1917), and ref erences cited therein.
- (164) H. Staab and W. Benz, Angew. Chem., **73,** 657 (1961). (165) R. T. Major and R. J. Hedrick, *J.* Org. Chem., 30, 1268 (1965).
- (166) See ref 123.
- (167) R. *S.* Berry, D. Cornell, and W. Lwowski, *J.* Am. Chem. SOC., **85,** 1200 (1963).
- (168) **M.** Prince and C. M. Orlando, Jr., *J.* Chem. *Soc.,* Chem. Commun., 818 (1967).
- (169) A. Haas and D. **Y.** Oh, Chem. Ber. **98,** 3353 (1965). (170) A. Haas and D. **Y.** Oh, Chem. Ber., **100,** 480 (1967). (171) H. Bayreuther and A. Haas, Chem. Ber., **104,** 2588 (1971).
-
-
- (172) A. Haas and W. Klug, Chem. Ber. **101,** 2609 (1968). (173) California Research Corp., F. Freedman, French Patent U 37291 1; Chem. Abstr., **62,** 1366 (1965).
- (174) Farbenfabrik Bayer, German Patent 1224720; Chem. Abstr., **65,** 121 12 (1966).
- (175) A. Haas and H. Reinke, Chem. Ber. **102,** 2718 (1969).
- (176) H. A. Staab and G. Walther, *Justus* Liebigs Ann. Chem., **657,** 104

(1962).

- **34,** 2521 (1964). (177) I. V. Pcdgornaya, N. N. Tayusheva, and I. **Y.** Postovskii, *Zh.* Obshch. *Khim.,*
- (1966). (178) U. Anthoni, C. Larsen, and P. H. Nielsen, Acta Chem. Scand., **20,** 1714
- (1967). (180) R. *S.* McElhinney, J. Chem. SOC. C, 950 (1966). (181) Z. El-Hewehi, E. Taeger, and F. Runge, *J. frakt.* Chem., **18,** 275 (179) U. Anthoni, C. Larsen, and P. H. Nielson, Acta Chem. Scand., **21,** 1201
-
- (1962) .
-
- (182) M. Delépine, *Bull. Soc. Chim. Fr.,* **27,** 587, 816 (1902).
(183) M. Delépine and P. Schving, *Bull. Soc. Chim. Fr.,* **7,** 896 (1910).
(184) P. Aubert, E. B. Knott, and L. A. Williams, *J. Chem. Soc.,* 2188 (1951)
-
- (185) E. B. Knott, *J.* Chem. Soc., 1644 (1956). (186) U. Anthoni, C. Larsen. and P. Nielsen, Acta Chem. Scand., **21,** 2061 (1967).
- (187) U. Anthoni, C. Larsen, and P. Nielsen, Acta Chem. Scand., **22,** 309 (1968).
- (188) U. Anthoni, C. Larsen. and P. Nieisen, Acta Chem. Scand., **22,** 1898 (1968).
- (189) U. Anthoni, C. Larsen, and P. Nieisen, Acta Chem. Scand., **21,** 2580 (1967).
- (190) U. Anthoni, C. Larsen, and P. Nielsen, Acta Chem. Scand., 21, 2571 (1967).